Int. ] Solids Structures, 1977, Vol. 13, pp. 709-715. Pergamon Press. Printed in Great Britain

UPPER AND LOWER BOUNDS OF BUCKLING LOADS

Ausert B. Ku
University of Detroit, Detroit, MI 48221, U.S.A.

(Received 4 May 1976, revised 20 December 1976)

Abstract—Upper and lower bounds of buckling load for a nonuniform elastic column under conservative
loading are considered. Compatible admissible moment and displacement functions are expressed in terms
of a compatible coordinate system. The generalized Timoshenko Quotient and the modified Schreyer and
Shih formula are the proposed upper and lower bounds. Both bounds when iterated converge to the exact
buckling load. The method described here is simple and convenient and applies to all self-adjoint problems
without exception.

1. INTRODUCTION

Since Weber[1] and Lord Rayleigh[2] initiated the investigation of upper bounds for eigen-
values about a century ago, numerous contributions have been made. One of the significant
recent developments is probably the formulation of the minimum-maximum and maximum-
minimum principles. The minimum-maximum principle by Polya[3] leads to an upper bound.
The more important and difficult maximum-minimum principle by Weyi[4] leads to a lower
bound. In engineering, the above two approaches are known as energy and complementary
energy methods of variational principles, For the upper bound estimation, it is customary to use
the Rayleigh Quotient[5]; for the lower bound, a number of formulations has been proposed [6~
8]. In physics and applied mathematics, the method of intermediate problem initiated by
Weinstein and improved by Aronszan, Bazley and others has proven to be surprisingly
accurate[9, 10], but the method is too complex, it has not gained popularity in engineering. So
the search for lower bound continues. Recently Schreyer and Shih[11] extended a method of
error estimate given in [12] for the determination of a lower bound. Later, Popelar extended
Schreyer and Shih’s lower bound formula to elastic bodies in [13, 14]. More recently, Masur
and Popelar expounded the complementary energy approach in [15] with emphasis on structural
stability. The lower bound as given by Schreyer and Shih depends on both Rayleigh and
Timoshenko Quotients. These quotients were defined in a way different from their usual
formulation and involve boundary terms explicitly. Boundary terms are also involved in the
Timoshenko Quotients formulated in [14, 15]. Accepting the basic approach of Schreyer and
Shih, Ku extended the range of applicability and improved the accuracy of the lower bound
formula in [16]. He further simplified the formulation of Timoshenko Quotient in [17] by
eliminating the explicit boundary terms. Therefore, both Timoshenko and Rayleigh Quotients
return to their familiar forms. However, the discussion in [16] was confined to uniform
columns, and that the improved lower bound formula in [17] was only formally established. The
purpose of the present paper is to generalize, supplement and improve the works of {16, 17].
For a systematical presentation extending to cover all the self-adjoint problems, new concepts
of admissible and compatible coordinate systems may be introduced. This is discussed in the
next section.

2. COMPATIBLE COORDINATE SYSTEM
A coordinate system is called admissible, if its x-axis is parallel to the undeformed axis of
the column. It is obviously convenient to express both displacement and moment of the column
in terms of an admissible coordinate system. Since it is unlikely that a nonparallel coordinate
system will be chosen, the admissible coordinate system is not a restriction. The new term is
introduced simply for convenience of discussion in the sequel. An admissible coordinate system
is called compatible, if the origin of the coordinate system is selected such that the boundary

1The author is grateful to Masur, Popelar and one of the reviewers who brought Refs. [14, 15] to his attention.
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values of the admissible displacement function satisfy the following condition
w(x)w'(x;) = w(x)w'(xz) = 0 n

where x,, x, are the x coordinates of the ends of the column. The conditions posed in eqn (1) is
certainly not too restrictive so as to exclude the possibility of such a coordinate system. One
way to establish such a coordinate system is to conceive that the support of a column is either
movable laterally or the opposite. In the case of a laterally immovable end, w =0 at that end,
eqn (1) is satisfied. In the case of a laterally movable end, either w' =0 or w' # 0 at that end;
when w' =0, eqn (1) is again satisfied. This leaves the movable and rotable end (or free end) as
the singular case where eqn (1) may be violated if noncompatible coordinate system is used.
The establishing of a compatible coordinate system for this case is illustrated by a nonuniform
column in a later section. The purpose of employing a compatible coordinate system is to
eliminate explicit bounding terms in the formulations.

3. TIMOSHENKO LOAD AS AN UPPER BOUND

The use of Rayleigh Quotient as an upper bound is well known. Modified Rayleigh Quotients
have also been proposed[S]. On physical reasoning, Timoshenko[18] demonstrated a method to
calculate the upper bound using the admissible function and its first derivative instead of the
first and second derivatives as required by the Rayleigh Quotient. Although Timoshenko’s
method yeilds a better upper bound than the Rayleigh Quotient, it has a limited applicability as
clearly stated, for example, by Simitese{19]. Generalized Timoshenko Quotients cited in the
introduction are applicable without such limitation but all, without exception, involve boundary
terms. To formulate a Timoshenko Quotient free from any limitations and explicit boundary
terms, consider the potential energy of neutral equilibrium

1 L] " _1_) ’ ’
U—i(kw,kw) 2<W,W) 2

where k> = EI is the bending rigidity of the column, w’, w” the first and second derivatives of
the admissible displacement function with respect to x, and the inner product is defined as

(A, A)= L Adx. 3)

Upon setting U =0 in eqn (2), the Rayleigh Quotient is obtained:

B (kW", kW")

Pr =000y

4)

Let M be an admissible moment function compatible with the admissible displacement
function w, then the complementary potential energy of neutral equilibrium is

U = 34M, M) =5 (o', w) ©

where f> = (1/k%) is the reciprocal of the bending rigidity. An admissible moment function M is
said to be compatible with the admissible displacement function w, if both M and w satisfy the
neutral equilibrium condition:

M'—Pw"=0. (6)
This equation is readily integrated to yield

M=Pm=P{w+ax+b). D
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The constants of integration a and b are determinable by boundary conditions discussed in a
later section. Upon substituting eqn (7) into eqn (5) and setting U, =0, the Timoshenko
Quotient is obtained

_{w',w)

Pr=tm. fmy

®

It will be shown that the Timoshenko Quotient given by eqn (8) is more accurate than the
Rayleigh Quotient and is therefore a better upper bound.

4. A LOWER BOUND FORMULA

Although jointly the admissible moment and admissible displacement functions satisfy the
equilibrium condition, the stresses or strains calculated on the basis of either admissible
functions do not always agree, unless the admissible functions happen to be the eigenfunctions.
The discrepancy can, therefore, serve as an indication of error. Define the residual moment by

M, = k*w"+ Pm )
and the residual complementary potential energy by
2€Uo = (fMd, fMd) (10)

where 2U, = (fm, fm) and € a coefficient indicating the magnitude of the discrepancy. Upon
substituting eqn (9) into eqn (10) and recognizing that

(M, ") =—~(w', w') (n
the following relation is obtained:
2eU, = (kw", kw"y = 2P(w', w'} + P*fm, fm). 12
Using eqns (4) and (8), eqn (12) can be recast as
€= PcPr—2P:P + P>, | (13)

The coefficient ¢ is a quadratic function of P for a specific admissible displacement function w.
If w is close to the first buckling mode, for example, then P is at least meaningful in the
interval 0 < P < P,. For lower bound estimates as will be shown later, P is at least meaningful
in the interval P, <P <P, On the other hand, the admissible displacement and moment
functions can be expanded in terms of the complete eigenfunction sets {W;} and {m}, that is:

W) =3 AW()
(14
m(x) = 2 Bimi(x).

It can be shown that for compatible moment and displacement functions, A, =B, (i=1,2,...).
Since the eigenvalue problem under consideration is self-adjoint, the following orthnormal
conditions follow:

(wi, wi) = & (15)

(kw', kw') = P:5; (16)

(fm, fmy =21, an
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Using these results, the following are readily established

(kW”, kwu) — i A,‘ZP,- (18)
wow)= 3 A7 (19)
(fm, fm)= Z % (20)

Upon substituting eqns (18)-(20) into eqn (12), it yields

2eUo= 3, ’—"%f—P‘l. @1

Regarding the right-hand side of eqn (21) as a first moment of (A*/P;) with respect to (P — P;)’,
it follows

S

*w]>

R
~Py=(P-PY 3 5 (22)
Since the eigenvalues are real and positive, it is possible to establish the inequality
(P-Py=(P-PY) (23)

provided P lies in the following interval:

P <P<pf=iRI_"L (23a)

o 2
2Us= (P -P) S 4 (24)
i=1 I
And the inequality follows:
e=(P-P)y (25)
From this inequality, a lower bound may be defined
=P-Ve (26)

provided P is within the interval defined by eqn (23a). The precise boundaries of P cannot be
determined a priori, and must be regarded as an open question. Combining eqns (26) with (13), a
lower bound is obtained. Now this lower bound increases monotonically with P. With the upper
boundary of the interval of P unknown, a conservative estimate of P, is to set P = P, whenitis
within the aforementioned interval. The lower bound thus obtained is

Py = Pr~V[Px(Px — P7)] (27

which is an improvement over those reported in {11, 13]. When P is not within the said interval,
say P > P¥, then eqn (26) will yield an upper bound instead of a lower bound. However, P, is
not crucially dependent on P as can be seen from the fact that P, » P as P - ; for any
P > P}, eqn (26) would still yield a better upper bound than Pr. Fortunately, for commonly
encountered problems, this difficulty does not present itself.
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5. PROOF OF THE TIMOSHENKO QUOTIENT AS AN UPPER BOUND
The fact that the Timoshenko Quotient is an upper bound follows from the definition of P+
and eqns (19) and (20), that is:

o 2
3 (5)
PT=P1 acA=‘2 1

3 (@)

The Timoshenko Quotient being a better upper bound than the Rayleigh Quotient is next
proved. Consider the Cauchy-Schwarz inequality

=P, @8

(kw", kw"X fm, fm)= (kw”, fm)*. 29
Upon combining eqns (11) and (29) and using the definitions of Pr and Py, it follows that
Pr=Pr=P. (30)

Therefore, the Timoshenko Quotient is indeed a better upper bound. Although other versions of
the Timoshenko Quotients must be related to the simpler one expressed by eqn (8), the
relationships are by no means obvious and are not of concern here. Therefore, the proofs
presented above are necessary.

6. THE CONSTRUCTION AND ITERATION OF ADMISSIBLE FUNCTIONS

From a practical point of view, once the admissible functions are known, upper and lower
bounds are readily computed. The remaining question is the accuracy of the results. Therefore,
it is in order to elaborate on the construction of admissible functions and to discuss the
accuracy and means to improve it when required.

Any continuous function of class C* and satisfying geometrical boundary conditions can be
considered as an admissible displacement function provided it is expressed in terms of a
compatible, admissible coordinate system. A compatible admissible moment function is then
constructed according to egn (6). When the column is statically determinate, both constants a
and b are readily determined from equilibrium considerations, When the column is statically
indeterminate, a and b are determined by the following compatibility boundary conditions.

w'(l)—w'0)={(fVm,fVm) €}))
w(l) — w(0) = w'(0) + {(f( — x), fm) (32a)

or
w(h— w(0) = w'(l)—{fx, fm). (32b)

With the admissible functions thus determined, unless they happen to be the eigenfunctions, the
Rayleigh and Timoshenko Quotients involve certain amounts of error. It can be shown that the
respective errors in Rayleigh and Timoshenko Quotients are A and Ay given below:

be=A2 T &P (Fi-1) (33)
i=1 1

and

Ar=—0© S=Al S &P (1-5) (34)

1This is different from eqn (13) of Ref. [14].
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where € = AfA, is the ratio of the expansion coefficient given in eqn (14). Although these
equations do not practically provide quantitative information, meaningful qualitative in-
formation can be derived. It is seen that errors for both the Rayleigh and Timoshenko Quotients
depend foremost on the closeness of the admissible displacement function to the first buckling
mode. The closeness is characterized here by the ¢”'s. The smaller these quantities, the closer
the admissible function is to the first buckling mode. To the second order of smallness of ¢, the
Timoshenko Quotient is more accurate than the Rayleigh Quotient due to the scaling factors
[1-(P,{P))] and [{P/P,)—1]. While the scaling factor for the Timoshenko Quotient being
{1-(P./P)]<1 and increases to the maximum value of One as { —, the scaling factor for the
Rayleigh Quotient increases without bound as i »«, At low i values, the magnitude of these
factors depend on the difference of the corresponding eigenvalue from the first eigenvalue.
Therefore, for a good selection of admissible displacement function, it is anticipated that both
would yield good results. For a poor selection, the Timoshenko Quotient would yield far better
results than the Rayleigh Quotient.

After the first set of admissible functions is constructed, these functions may be iterated for
better accuracy. The iteration proceeds as follows. By two successive integrations of the
moment curvature relationship

M(l) — u{k.’.w(z)}n (35)

the iterated displacement function w is obtained. The constants of integration are made to
satisfy the required boundary conditions. The iterated moment function is generated again by
eqn (6) with the iterated displacement function. The process may be repeated as often as
desired. It can be shown that the displacement function corresponding to the nth iteration is

{1y

where 2 A;w; is the expansion of w'”. As n increases indefinitely, it is clearly seen that the

im]
iterated displacement function approaches the first buckling mode. Since admissible moment
function is generated by eqn (6), it must also approach the buckling moment function. As a first
example, consider the buckling of a uniform column with both ends fixed. The compatible
coordinate system in this case is not unique, any admissible coordinate system would be
acceptable. The iterated moment and displacement functions along with upper and lower
bounds are shown in Table 1.

As a second example, consider the buckling of a nonuniform cantilever column. The
compatible coordinate system for this problem requires the origin of the coordinate system be
located at the deflected free end. In terms of this coordinate system, w(0) = w'(0) =0, eqn (1) is
satisfied. Assume the bending rigidity of the column varies according to k= k.’ (¢§a)’, a < £ =
x/l<1+a where a = 1/V(2)—1. The exact buckling load is P, = 4.046(k./I)’(18]. Using the
following admissible moment and displacement function

m=pw = p[£ = 2(1+ a)f + a2+ a)] 37
the Rayleigh Quotient, the Timoshenko Quotient and the lower bound are calculated as:

2
Pr = 4.4141 (l‘f) (38)

Table 1. Upper and lower bounds

Iteration No. 0 i

Displacement function a(30¢* - 608> + 30¢%) £ — 126"+ 108~ 289
Moment function aP(30£ — 608 + 308 - 1) bP(4E - 128 + 108 - 282+ 221
Upper bound coefficient 40 39.517
Lower bound coefficient 32,835 37.691

Exact 4n* = 39.478
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Pr = 4.065 (%)2 (39)
P, =317 (%) (40)

7. CONCLUSIONS

The Rayleigh Quotient as an upper bound possesses a number of appealing points. It is easy
to apply and applies without exception to all self-adjoint problems. Although several versions
of the Timoshenko Quotients are now available[11, 13-15], as far as column stability is
concerned, the version presented in this paper clearly demonstrates that it is comparable to the
Rayleigh Quotient in terms of the aforementioned appealing points. Since the Timoshenko
Quotient is a better upper bound, the little additional effort required to obtain it is amply
rewarded by the lower bound results derived from it. The lower bound formula presented in the
present paper is a considerable improvement of those reported in Refs. [11, 13). However, the
optimal lower bound remains an open question and there is a possibility that eqn (26) may fail.
In that event it provides a better upper bound than the Timoshenko Quotient. Finally, both the
upper and lower bounds converge to the exact buckling load when the moment and displacement
functions are iterated.
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